NinjaQuant API
NinjaQuant is a quant backtesting and analytics API on Injective Mainnet using real Market IDs to simulate perpetual futures strategies with comparison, regime detection, and risk metrics.
Videos

Tech Stack
Description
🥷 NinjaQuant – Injective Strategy Backtesting API
Injective Python FastAPI Quant Framework
Demo : https://devtrad.onrender.com/docs
Repo : https://github.com/Suganthan96/Devtrad
🚀 Built on Injective Mainnet
NinjaQuant is a production-ready quantitative backtesting and analytics API built on Injective Mainnet perpetual futures markets.
It provides a structured intelligence layer on top of Injective’s derivatives infrastructure, enabling:
Strategy backtesting
Parameter comparison
Market regime detection
Risk analytics
Professional performance evaluation
🔗 Injective Mainnet Integration
✅ REAL Injective Market IDs (Mainnet Verified)
This API uses hardcoded, blockchain-verified Market IDs directly from Injective Mainnet.
📊 Supported Markets (Mainnet)
🔐 Verification Details
✅ Mainnet Market IDs
✅ Verified on Injective Explorer
✅ Connected to Pyth Oracle feeds
✅ Blockchain-validated market mapping
Server logs confirm usage:
✅ Using Injective Market ID
Market ID: 0x9b9980167ecc3645ff1a5517886652d94a0825e54a77d2057cbbe3ebee015963
Oracle: Pyth
🎯 Problem
Injective provides rich on-chain derivatives data.
However, developers lack:
A structured backtesting engine
Risk-adjusted performance metrics
Market condition analytics
Strategy comparison tools
A quant abstraction layer
Most APIs expose raw data — not evaluated trading intelligence.
💡 Solution
NinjaQuant provides a modular FastAPI-based quant intelligence engine that:
Uses verified Injective Mainnet Market IDs
Fetches historical OHLCV data
Executes strategy simulations
Computes professional metrics
Classifies market conditions
Performs risk analysis
Compares multiple strategies in one request
It transforms Injective into a quant research-ready ecosystem.
📡 API Routes
🧪 Core Backtesting Endpoints
🔹 POST /backtest/ema-crossover
Backtest EMA crossover strategy on Injective Mainnet markets.
POST http://devtrad.onrender.com/backtest/ema-crossover
Content-Type: application/json
{
"market": "BTC/USDT PERP",
"timeframe": "1h",
"parameters": {
"short_period": 9,
"long_period": 21
},
"initial_capital": 10000
}
🔹 POST /backtest/rsi-mean-reversion
Backtest RSI mean reversion strategy.
POST https://devtrad.onrender.com/backtest/rsi-mean-reversion
Content-Type: application/json
{
"market": "ETH/USDT PERP",
"timeframe": "1h",
"strategy": "rsi_mean_reversion",
"parameters": {
"period": 14,
"oversold": 30,
"overbought": 70
},
"initial_capital": 10000
}
🚀 Advanced Quant APIs
🔬 POST /compare
Compare multiple strategy configurations in one request.
Example:
EMA(9,21) vs EMA(12,26)
RSI(14,30,70)
Automatically identifies best performing strategy.
POST http://devtrad.onrender.com/compare
Content-Type: application/json
{
"market": "BTC/USDT PERP",
"timeframe": "1h",
"strategies": [
{
"strategy": "ema_crossover",
"parameters": {
"short_period": 9,
"long_period": 21
}
},
{
"strategy": "ema_crossover",
"parameters": {
"short_period": 12,
"long_period": 26
}
},
{
"strategy": "rsi_mean_reversion",
"parameters": {
"period": 14,
"oversold": 30,
"overbought": 70
}
}
],
"initial_capital": 10000
}
🌡️ GET /market-regime
Classifies current market condition.
Returns:
Trending / Ranging / Volatile
Trend strength
Volatility level
Strategy recommendation
GET http://devtrad.onrender.com/market-regime?market=BTC/USDT PERP&timeframe=1h
Content-Type: application/json
📊 POST /risk-analysis
Professional risk metrics:
Return volatility
Value at Risk (VaR)
Max consecutive losses
Risk classification (Low / Medium / High)
POST http://devtrad.onrender.com/risk-analysis
Content-Type: application/json
{"market": "ETH/USDT PERP",
"timeframe": "1h",
"strategy": "rsi_mean_reversion",
"parameters": {
"period": 14,
"oversold": 30,
"overbought": 70
},
"initial_capital": 10000
}
🧠 Strategy Engine
1️⃣ EMA Crossover Strategy
Uses Short EMA & Long EMA
Golden Cross → Buy
Death Cross → Sell
Best for trending markets
2️⃣ RSI Mean Reversion Strategy
Uses RSI momentum oscillator
Oversold → Buy
Overbought → Sell
Best for range-bound markets
📊 Standardized Performance Metrics
Each backtest returns:
Win Rate
Total Return
Maximum Drawdown
Sharpe Ratio
Total Trades
Formulas:
Win Rate = Profitable Trades / Total Trades
Total Return = (Final − Initial) / Initial
Max Drawdown = Largest peak-to-trough decline
Sharpe Ratio = Mean Return / Std Dev Return
🏗 Architecture Overview
Injective Mainnet Data
↓
Data Layer (injective_client.py)
↓
Strategy Engine
↓
Metrics Engine
↓
FastAPI Routes
↓
Structured JSON Output